Implicit differentiation - AP Calculus AB

Card 1 of 352

0
Didn't Know
Knew It
0
1 of 2019 left
Question

Let f(x)=x^2-\frac{1}{1-x^2}. Which of the following gives the equation of the line normal to f(x) when ?

Tap to reveal answer

Answer

We are asked to find the normal line. This means we need to find the line that is perpendicular to the tangent line at . In order to find the tangent line, we will need to evaluate the derivative of at .

f(x)=x^2-\frac{1}{1-x^2}=x^2-(1-x^2)^{-1}

f'(x)=2x-(-1)(1-x^2)^{-2}(-2x)

f'(x)=2x-2x(1-x^2)^{-2}

f'(2)=2(2)-2(2)(1-2^2)^{-2}

f'(2)=4-4(\frac{1}{9})=\frac{32}{9}

The slope of the tangent line at is . Because the tangent line and the normal line are perpendicular, the product of their slopes must equal .

(slope of tangent)(slope of normal) =

We now have the slope of the normal line. Once we find a point through which it passes, we will have enough information to derive its equation.

Since the normal line passes through the function at , it will pass through the point . Be careful to use the original equation for , not its derivative.

f(2)=2^2-(1-4)^{-1}=4-(-\frac{1}{3})=\frac{13}{3}

The normal line has a slope of and passes through the piont . We can now use point-slope form to find the equation of the normal line.

y-\frac{13}{3}=-\frac{9}{32}(x-2)

Multiply both sides by .

96y-416=-27(x-2)

27x + 96y = 470

The answer is 27x + 96y = 470.

← Didn't Know|Knew It →