Electron Transport and Oxidative Phosphorylation - Biochemistry
Card 0 of 204
Suppose that a scientist is simultaneously measuring both the amount of oxygen and the amount of glucose that is being used by cells. If a chemical were added that inhibited the electron transport chain, what would be expected to happen to the consumption of oxygen and glucose?
Suppose that a scientist is simultaneously measuring both the amount of oxygen and the amount of glucose that is being used by cells. If a chemical were added that inhibited the electron transport chain, what would be expected to happen to the consumption of oxygen and glucose?
Aerobic respiration is a process that utilizes the electron transport chain in order to oxidize glucose into energy. If a chemical were added that inhibited the electron transport chain, the cell would no longer be able to fully oxidize glucose. Therefore, oxygen consumption will decrease. Furthermore, since the cell is now in a situation in which it is not able to make as much energy per glucose molecule as before, it will need to increase its consumption of glucose in order to generate enough energy through anaerobic respiration alone.
Aerobic respiration is a process that utilizes the electron transport chain in order to oxidize glucose into energy. If a chemical were added that inhibited the electron transport chain, the cell would no longer be able to fully oxidize glucose. Therefore, oxygen consumption will decrease. Furthermore, since the cell is now in a situation in which it is not able to make as much energy per glucose molecule as before, it will need to increase its consumption of glucose in order to generate enough energy through anaerobic respiration alone.
Compare your answer with the correct one above
ATP synthase can be inhibited exclusively by .
ATP synthase can be inhibited exclusively by .
Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Compare your answer with the correct one above
Complex III can be inhibited exclusively by .
Complex III can be inhibited exclusively by .
Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the inner mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the inner mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Compare your answer with the correct one above
Complex I can be inhibited exclusively by .
Complex I can be inhibited exclusively by .
Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen.
Compare your answer with the correct one above
Complex IV can be inhibited exclusively by .
Complex IV can be inhibited exclusively by .
Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain.
Cyanide is a gas that inhibits complex IV of the electron transport chain. Cyanide combines with cytochrome oxidase and prevents the transfer of electrons to oxygen. Antimycin is a fungal antibiotic that inhibits complex III of the electron transport chain. Antimycin prevents the transfer of electrons through the cytochrome b-c complex. Oligomycin is an antibiotic that inhibits ATP synthase. It works by binding to the stalk of ATP synthase. This prevents proton re-entry into the mitochondrial matrix. This results in a halt of the proton motive force that ATP synthase uses to created ATP from one unit of ADP and one unit of inorganic phosphate. Rotenone is a pesticide and fish poison that inhibits NADH dehydrogenase in complex I causing the levels of NADH to increase. This results in a halt of the electron transport chain.
Compare your answer with the correct one above
Which of the following is a function of coenzyme Q10 (CoQ10) during the electron transport chain (ETC)?
Which of the following is a function of coenzyme Q10 (CoQ10) during the electron transport chain (ETC)?
CoQ10 is produced in the liver and oxidizes enzyme complex II. It is subsequently oxidized by enzyme complex III in the ETC. Oxygen is the final acceptor of electrons in the ETC.
CoQ10 is produced in the liver and oxidizes enzyme complex II. It is subsequently oxidized by enzyme complex III in the ETC. Oxygen is the final acceptor of electrons in the ETC.
Compare your answer with the correct one above
Oxygen is known as the "terminal electron receptor" in the electron transport chain. Suppose an organism lacks the ability to breathe in oxygen.
What is the most likely effect an oxygen deficit would have on the electron transport chain in mitochondria?
Oxygen is known as the "terminal electron receptor" in the electron transport chain. Suppose an organism lacks the ability to breathe in oxygen.
What is the most likely effect an oxygen deficit would have on the electron transport chain in mitochondria?
Without a terminal electron acceptor, the electrons of
and
would have nowhere to be released, all of the complexes would be "backed up" as each complex would not be able to pass off its electrons to the next complex. ATP production would come to a standstill.
Without oxygen to receive the electrons, the entire flow of the electron transportation chain halts, as well as ATP production. It is the continuous flow of electrons through the ETC complexes that allows a mitochondria to harness the energy of the electrons that
and
donate. This energy is used to pump protons across the intermembrane space of a mitochondria. The re-entry of these protons through ATP synthase is what drives the production of ATP.
In short, no electron flow means no proton pumps and no re-entry of those protons through ATP synthase. A cell could potentially resort to glycolysis to produce ATP, and can regenerate
or
using anaerobic fermentation such as alcohol fermentation of lactic acid fermentation.
Without a terminal electron acceptor, the electrons of and
would have nowhere to be released, all of the complexes would be "backed up" as each complex would not be able to pass off its electrons to the next complex. ATP production would come to a standstill.
Without oxygen to receive the electrons, the entire flow of the electron transportation chain halts, as well as ATP production. It is the continuous flow of electrons through the ETC complexes that allows a mitochondria to harness the energy of the electrons that and
donate. This energy is used to pump protons across the intermembrane space of a mitochondria. The re-entry of these protons through ATP synthase is what drives the production of ATP.
In short, no electron flow means no proton pumps and no re-entry of those protons through ATP synthase. A cell could potentially resort to glycolysis to produce ATP, and can regenerate or
using anaerobic fermentation such as alcohol fermentation of lactic acid fermentation.
Compare your answer with the correct one above
To which component of the electron transport chain does cyanide bind?
To which component of the electron transport chain does cyanide bind?
The electron transport chain passes electrons thru its main components: complex I (NADH dehydrogenase), coenzyme Q, complex III, cytochrome C, and complex IV. Complex IV is the cytochrome oxidase complex and it is inhibited by cyanide, carbon monoxide and azide. Cyanide binds irreversibly to complex IV preventing electron transfer.
The electron transport chain passes electrons thru its main components: complex I (NADH dehydrogenase), coenzyme Q, complex III, cytochrome C, and complex IV. Complex IV is the cytochrome oxidase complex and it is inhibited by cyanide, carbon monoxide and azide. Cyanide binds irreversibly to complex IV preventing electron transfer.
Compare your answer with the correct one above
Which of the following are uncouplers of the electron transport chain?
I. Carbon monoxide
II. 2,4-Dinitrophenol
III. Nitric oxide
IV. Aspirin
Which of the following are uncouplers of the electron transport chain?
I. Carbon monoxide
II. 2,4-Dinitrophenol
III. Nitric oxide
IV. Aspirin
Uncouplers of the electron transport chain decrease the proton gradient and thus decrease ATP synthesis. Most energy from the electron transport chain is released as heat. The most common uncouplers are 2,4-dinitrophenol and aspirin, as well as thermogenin. Carbon monoxide is an inhibitor of the electron transport chain, not an uncoupler. Nitric oxide does not affect directly the electron transport chain.
Uncouplers of the electron transport chain decrease the proton gradient and thus decrease ATP synthesis. Most energy from the electron transport chain is released as heat. The most common uncouplers are 2,4-dinitrophenol and aspirin, as well as thermogenin. Carbon monoxide is an inhibitor of the electron transport chain, not an uncoupler. Nitric oxide does not affect directly the electron transport chain.
Compare your answer with the correct one above
Reactive oxygen species are by-products of the electron transport chain. Which of the following are considered reactive oxygen species?
Reactive oxygen species are by-products of the electron transport chain. Which of the following are considered reactive oxygen species?
Reactive oxygen species are superoxide, hydrogen peroxide, and hydrogen radicals. They are degraded by catalase, superoxide dismutase, and glutathione peroxidase. Neutrophils use reactive oxygen species to kill bacteria during the phagocytic oxidative burst.
Reactive oxygen species are superoxide, hydrogen peroxide, and hydrogen radicals. They are degraded by catalase, superoxide dismutase, and glutathione peroxidase. Neutrophils use reactive oxygen species to kill bacteria during the phagocytic oxidative burst.
Compare your answer with the correct one above
What is an electron acceptor in oxidative phosporylation?
What is an electron acceptor in oxidative phosporylation?
Oxygen is an electron acceptor. In the absence of oxygen (hypoxia) cells cannot generate ATP in the mitochondria. Instead, they will utilize glycolysis. Oxygen is required to carry out the electron transport chain and produce ATP via oxidative phosphorylation.
Oxygen is an electron acceptor. In the absence of oxygen (hypoxia) cells cannot generate ATP in the mitochondria. Instead, they will utilize glycolysis. Oxygen is required to carry out the electron transport chain and produce ATP via oxidative phosphorylation.
Compare your answer with the correct one above
Which of the following metabolic processes directly requires oxygen?
Which of the following metabolic processes directly requires oxygen?
The electron transport system is the only metabolic process listed that directly requires molecular oxygen. Oxygen is the final electron acceptor (it is one of the most electronegative atoms in our bodies) in the electron transport chain. This is the same as saying that oxygen has the highest reduction potential, and is capable of receiving electons. If oxygen is not present to accept the electron from the final enzyme complex in the inner mitochondrial membrane, then electron transport will be inhibited and thus no ATP will be produced via chemiosmosis.
Note that the Krebs cycle, citric acid cycle, and tricarboxylic acid cycle (TCA cycle) all refer to the same process, and do not directly require oxygen (oxygen is neither a reactant nor a product in any of the steps). However, oxygen is indirectly required, as there is no point to this cycle without subsequent oxidative phosphorylation. Thus in the absence of oxygen, of the choices shown, only glycolysis will proceed uninhibited.
The electron transport system is the only metabolic process listed that directly requires molecular oxygen. Oxygen is the final electron acceptor (it is one of the most electronegative atoms in our bodies) in the electron transport chain. This is the same as saying that oxygen has the highest reduction potential, and is capable of receiving electons. If oxygen is not present to accept the electron from the final enzyme complex in the inner mitochondrial membrane, then electron transport will be inhibited and thus no ATP will be produced via chemiosmosis.
Note that the Krebs cycle, citric acid cycle, and tricarboxylic acid cycle (TCA cycle) all refer to the same process, and do not directly require oxygen (oxygen is neither a reactant nor a product in any of the steps). However, oxygen is indirectly required, as there is no point to this cycle without subsequent oxidative phosphorylation. Thus in the absence of oxygen, of the choices shown, only glycolysis will proceed uninhibited.
Compare your answer with the correct one above
Which phase of cellular respiration accounts for the highest production of energy?
Which phase of cellular respiration accounts for the highest production of energy?
The electron transport chain generates the most ATP out of all three major phases of cellular respiration. Glycolysis produces a net of 2 ATP per molecule of glucose. In the Krebs cycle, there is one GTP (which is an ATP equivalent) generate in the conversion of succinyl-CoA to succinate. However, the majority of the ATP produced during cellular respiration occurs at the electron transport chain by the reduction of coenzymes NADH and
. This subsequently results in the generation of the proton motive force which ATP synthase uses to generate ATP from one unit of ADP and one unit of inorganic phosphate.
The electron transport chain generates the most ATP out of all three major phases of cellular respiration. Glycolysis produces a net of 2 ATP per molecule of glucose. In the Krebs cycle, there is one GTP (which is an ATP equivalent) generate in the conversion of succinyl-CoA to succinate. However, the majority of the ATP produced during cellular respiration occurs at the electron transport chain by the reduction of coenzymes NADH and . This subsequently results in the generation of the proton motive force which ATP synthase uses to generate ATP from one unit of ADP and one unit of inorganic phosphate.
Compare your answer with the correct one above
Where does oxidative phosphorylation take place in a prokaryote?
Where does oxidative phosphorylation take place in a prokaryote?
In a eukaryote, oxidative phosphorylation occurs in the mitochondria because this is where the cell is able to set up a proton gradient. However, prokaryotes do not have mitochondria - they have no membrane-bound organelles at all. Therefore, the proton gradient that drives ATP synthesis in oxidative phosphorylation is created across the cell membrane.
In a eukaryote, oxidative phosphorylation occurs in the mitochondria because this is where the cell is able to set up a proton gradient. However, prokaryotes do not have mitochondria - they have no membrane-bound organelles at all. Therefore, the proton gradient that drives ATP synthesis in oxidative phosphorylation is created across the cell membrane.
Compare your answer with the correct one above
If an uncoupler allows for excess buildup of protons inside of the mitochondrial matrix, which of the following processes will be inhibited?
If an uncoupler allows for excess buildup of protons inside of the mitochondrial matrix, which of the following processes will be inhibited?
With the excess buildup of protons in the matrix, the only thing that will be inhibited is the generation of ATP by ATP synthase. The other processes in cellular respiration focus more on creation of high energy electron carriers, and therefore will continue as normal.
With the excess buildup of protons in the matrix, the only thing that will be inhibited is the generation of ATP by ATP synthase. The other processes in cellular respiration focus more on creation of high energy electron carriers, and therefore will continue as normal.
Compare your answer with the correct one above
In oxidative phosphorylation, electrons are transferred from NADH and FADH2 to electron acceptors. This is one example of an oxidative process. Which of the following processes within another biochemical process could be considered oxidation?
In oxidative phosphorylation, electrons are transferred from NADH and FADH2 to electron acceptors. This is one example of an oxidative process. Which of the following processes within another biochemical process could be considered oxidation?
Predictably, a gain in oxygen is known as oxidation, while a loss of oxygen is reduction. Hydrogen follows the opposite pattern as oxidation: removing hydrogen is oxidation, while gaining hydrogen is reduction. Therefore, the correct answer is that removing hydrogens is considered oxidation.
In order to differentiate between oxidation and reduction in terms of electron transfer, it is helpful to remember the phrase "LEO the tiger says GER". A loss of electrons is oxidation, while a gain of electrons is reduction.
Predictably, a gain in oxygen is known as oxidation, while a loss of oxygen is reduction. Hydrogen follows the opposite pattern as oxidation: removing hydrogen is oxidation, while gaining hydrogen is reduction. Therefore, the correct answer is that removing hydrogens is considered oxidation.
In order to differentiate between oxidation and reduction in terms of electron transfer, it is helpful to remember the phrase "LEO the tiger says GER". A loss of electrons is oxidation, while a gain of electrons is reduction.
Compare your answer with the correct one above
What is the major role of oxidative phosphorylation in cellular respiration?
What is the major role of oxidative phosphorylation in cellular respiration?
During oxidative phosphorylation,
is created from the previously created
and
. All of the other choices describe other parts of cellular respiration. In glycolysis, glucose is oxidized to pyruvate. In both glycolysis and the Krebs cycle, substrate level phosphorylation occurs. Likewise,
and
are produced during glycolysis and the Krebs cycle, but not during oxidative phosphorylation, where these high energy electrons are passed down a series of membrane-bound enzymes to oxygen meanwhile protons are pumped into the intermembrane space of the mitochondria.
During oxidative phosphorylation, is created from the previously created
and
. All of the other choices describe other parts of cellular respiration. In glycolysis, glucose is oxidized to pyruvate. In both glycolysis and the Krebs cycle, substrate level phosphorylation occurs. Likewise,
and
are produced during glycolysis and the Krebs cycle, but not during oxidative phosphorylation, where these high energy electrons are passed down a series of membrane-bound enzymes to oxygen meanwhile protons are pumped into the intermembrane space of the mitochondria.
Compare your answer with the correct one above
Which of the following correctly matches the phase of cellular respiration with its location in the cell?
Which of the following correctly matches the phase of cellular respiration with its location in the cell?
Glycolysis occurs in the cytoplasm. Pyruvate dehydrogenase complex occurs in the mitochondrial matrix. Krebs cycle occurs in the mitochondrial matrix. Electron transport chain protein complexes are embedded in the mitochondrial inner membrane.
Glycolysis occurs in the cytoplasm. Pyruvate dehydrogenase complex occurs in the mitochondrial matrix. Krebs cycle occurs in the mitochondrial matrix. Electron transport chain protein complexes are embedded in the mitochondrial inner membrane.
Compare your answer with the correct one above
Which of the following steps represents a correct source of carbon dioxide during aerobic respiration?
Which of the following steps represents a correct source of carbon dioxide during aerobic respiration?
To answer this question, it's important to have familiarity with the process of aerobic respiration.
In the first major pathway, glycolysis is split into two molecules of pyruvate through a series of reactions. Along the way, high-energy electron carriers are produced, along with ATP.
In the next major step, pyruvate is transferred into mitochondria, where it is decarboxylated into acetyl-CoA, with a concomitant production of NADH and carbon dioxide. Hence, this is a step that produces carbon dioxide. However, it is not found in the answer choices.
The third major component of aerobic respiration is the citric acid cycle. Here, the acetyl-CoA from the previous step is completely ripped apart to provide a great deal of energy. This huge amount of energy that is liberated is because the two carbon atoms that make up the acetyl group of acetyl-CoA become completely oxidized into two molecules of carbon dioxide. In terms of the energy liberated from the cycle, ATP along with a good deal of high-energy electron carriers are produced. This component of aerobic respiration is indeed a source of carbon dioxide.
Fermentation is an anaerobic pathway and is thus not the correct answer. Depending on the organism, carbon dioxide may or may not be produced.
Finally, aerobic respiration culminates in oxidative phosphorylation. Here, all of the high energy carriers from the previous steps are fed into the electron transport chain, resulting in the production of a great amount of ATP, the main energy currency of cells. In this final major step, it is oxygen gas that is produced, not carbon dioxide.
To answer this question, it's important to have familiarity with the process of aerobic respiration.
In the first major pathway, glycolysis is split into two molecules of pyruvate through a series of reactions. Along the way, high-energy electron carriers are produced, along with ATP.
In the next major step, pyruvate is transferred into mitochondria, where it is decarboxylated into acetyl-CoA, with a concomitant production of NADH and carbon dioxide. Hence, this is a step that produces carbon dioxide. However, it is not found in the answer choices.
The third major component of aerobic respiration is the citric acid cycle. Here, the acetyl-CoA from the previous step is completely ripped apart to provide a great deal of energy. This huge amount of energy that is liberated is because the two carbon atoms that make up the acetyl group of acetyl-CoA become completely oxidized into two molecules of carbon dioxide. In terms of the energy liberated from the cycle, ATP along with a good deal of high-energy electron carriers are produced. This component of aerobic respiration is indeed a source of carbon dioxide.
Fermentation is an anaerobic pathway and is thus not the correct answer. Depending on the organism, carbon dioxide may or may not be produced.
Finally, aerobic respiration culminates in oxidative phosphorylation. Here, all of the high energy carriers from the previous steps are fed into the electron transport chain, resulting in the production of a great amount of ATP, the main energy currency of cells. In this final major step, it is oxygen gas that is produced, not carbon dioxide.
Compare your answer with the correct one above
Below are standard reduction potentials of components in carbohydrate metabolism



What is the free energy change for this reaction?

Below are standard reduction potentials of components in carbohydrate metabolism
What is the free energy change for this reaction?
First, let's consider the half reactions involved to determine
.


This overall reaction involves the donation of 2 electrons, so 
is defined as
. The reaction we drew earlier is shown below:

We can see that
was oxidized and
was reduced. Find
.

is Faraday's constant, and is defined as: 
Solve for 


First, let's consider the half reactions involved to determine .
This overall reaction involves the donation of 2 electrons, so
is defined as
. The reaction we drew earlier is shown below:
We can see that was oxidized and
was reduced. Find
.
is Faraday's constant, and is defined as:
Solve for
Compare your answer with the correct one above