Understand Functions: CCSS.Math.Content.8.F.A.1 - 8th Grade Math
Card 0 of 80
Solve for
:

Solve for :
To factor this equation, first find two numbers that multiply to 35 and sum to 12. These numbers are 5 and 7. Split up 12x using these two coefficients:




To factor this equation, first find two numbers that multiply to 35 and sum to 12. These numbers are 5 and 7. Split up 12x using these two coefficients:
Compare your answer with the correct one above
Which of the following equations represents a one-to-one function:





Which of the following equations represents a one-to-one function:
Only equation B maps each value of
into a unique value of
and in a similar way each and every value of
maps into one and only one value of
.
Only equation B maps each value of into a unique value of
and in a similar way each and every value of
maps into one and only one value of
.
Compare your answer with the correct one above
![f(x) = \frac{x^{4}-x+\sqrt[3]{x}}{x^{x}+3x}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/434992/gif.latex)
Find
.
Find .
This question demonstrates that complicated functions are not complicated at every point.
To solve the function at x=1, all that is necessary is familiarity with the operations used.
![f(1) = \frac{1^{4}-1+\sqrt[3]{1}}{1^{1}+3(1)}](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/434994/gif.latex)


This question demonstrates that complicated functions are not complicated at every point.
To solve the function at x=1, all that is necessary is familiarity with the operations used.
Compare your answer with the correct one above
Solve for
:

Solve for :
To find
, we must factor the quadratic function:





To find , we must factor the quadratic function:
Compare your answer with the correct one above
Solve for
:

Solve for :
To find
, we want to factor the quadratic function:





To find , we want to factor the quadratic function:
Compare your answer with the correct one above
Define
.
Evaluate
.
Define .
Evaluate .
To evaluate
substitute six in for every x in the equation.


To evaluate substitute six in for every x in the equation.
Compare your answer with the correct one above
Define 
Which of the following is equivalent to
?
Define
Which of the following is equivalent to ?
To solve this problem replace every x in
with
.

Therefore,




To solve this problem replace every x in with
.
Therefore,
Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Select the table that properly represents a function.
Select the table that properly represents a function.
Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Each of the tables provided contains sets of ordered pairs. The input column represents the x-variables, and the output column represents the y-variables. We can tell if a set of ordered pairs represents a function when we match x-values to y-values.
In order for a table to represents a function, there must be one and only one input for every output. This means that our correct answer will have all unique input values:

Functions cannot have more than one input value that is the same; thus, the following tables do not represent a function:



Compare your answer with the correct one above
Solve for
:

Solve for :
To factor this equation, first find two numbers that multiply to 35 and sum to 12. These numbers are 5 and 7. Split up 12x using these two coefficients:




To factor this equation, first find two numbers that multiply to 35 and sum to 12. These numbers are 5 and 7. Split up 12x using these two coefficients:
Compare your answer with the correct one above