Diagnostic Test 2
•60 Questions
In the above sequence, the unfolded protein sensor binds to unfolded protein, such as the pathogenic amyloid-beta found in the brains of Alzheimer’s Disease patients. This sensor then phosphorylates PERK, or protein kinase RNA-like endoplasmic reticulum kinase. This leads to downstream effects on eIF2, inhibition of which represses translation. It is thought that symptoms of neurodegenerative disease may be a result of this reduced translation.
We do not know the exact action of eIF2 after it has been acted upon by PERK, and therefore cannot draw conclusions about the phosphorylation or dephosphorylation of transcription factors.
Which of the following is most likely the molecular event that causes repression of translation, based on the information in the passage?

In the above sequence, the unfolded protein sensor binds to unfolded protein, such as the pathogenic amyloid-beta found in the brains of Alzheimer’s Disease patients. This sensor then phosphorylates PERK, or protein kinase RNA-like endoplasmic reticulum kinase. This leads to downstream effects on eIF2, inhibition of which represses translation. It is thought that symptoms of neurodegenerative disease may be a result of this reduced translation.
We do not know the exact action of eIF2 after it has been acted upon by PERK, and therefore cannot draw conclusions about the phosphorylation or dephosphorylation of transcription factors.
Which of the following is most likely the molecular event that causes repression of translation, based on the information in the passage?